Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J. venom. anim. toxins incl. trop. dis ; 27: e20200182, 2021. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1250254

ABSTRACT

The accessory ß1 subunits, regulating the pharmacological and biophysical properties of BK channels, always undergo post-translational modifications, especially glycosylation. To date, it remains elusive whether the glycosylation contributes to the regulation of BK channels by ß1 subunits. Methods: Herein, we combined the electrophysiological approach with molecular mutations and biochemical manipulation to investigate the function roles of N-glycosylation in ß1 subunits. Results: The results show that deglycosylation of ß1 subunits through double-site mutations (ß1 N80A/N142A or ß1 N80Q/N142Q) could significantly increase the inhibitory potency of iberiotoxin, a specific BK channel blocker. The deglycosylated channels also have a different sensitivity to martentoxin, another BK channel modulator with some remarkable effects as reported before. On the contrary to enhancing effects of martentoxin on glycosylated BK channels under the presence of cytoplasmic Ca2+, deglycosylated channels were not affected by the toxin. However, the deglycosylated channels were surprisingly inhibited by martentoxin under the absence of cytoplasmic Ca2+, while the glycosylated channels were not inhibited under this same condition. In addition, wild type BK (α+ß1) channels treated with PNGase F also showed the same trend of pharmacological results to the mutants. Similar to this modulation of glycosylation on BK channel pharmacology, the deglycosylated forms of the channels were activated at a faster speed than the glycosylated ones. However, the V1/2 and slope were not changed by the glycosylation. Conclusion: The present study reveals that glycosylation is an indispensable determinant of the modulation of ß1-subunit on BK channel pharmacology and its activation. The loss of glycosylation of ß1 subunits could lead to the dysfunction of BK channel, resulting in a pathological state.(AU)


Subject(s)
Glycosylation , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase , Mutation , Pharmacology
2.
Indian J Exp Biol ; 2014 Mar; 52(3): 197-206
Article in English | IMSEAR | ID: sea-150349

ABSTRACT

Peptide: N- glycanase (PNGase) enzyme is found throughout eukaryotes and plays an important role in the misfolded glycoprotein degradation pathway. This communication reports the expression patterns of the pngase transcript (as studied by the analysis of β- galactosidase reporter driven by the putative pngase promoter) and protein (as studied by the analysis of β- galactosidase reporter expressed under the putative pngase promoter as a fusion with the pngase ORF) during development and further elucidated the developmental defects of the cells lacking PNGase (png-). The results show that the DdPNGase is an essential protein expressed throughout development and β- galactosidase activity was present in the anterior part of the slug. In structures derived from a null mutant for pngase, the prestalk A and AO patterning was expanded and covered a large section of the prespore region of the slugs. When developed as chimeras with wild type, the png- cells preferentially populate the prestalk/stalk region. When the mutants were mixed in higher ratios, they also tend to form the prespore/spore cells. The results emphasize that the DdPNGase has an essential role during development and the mutants have defects in a system that changes the physiological dynamics in the prespore cells. DdPNGase play a role in development both during aggregation and in the differentiation of prespore cells.


Subject(s)
Cell Differentiation/genetics , Chimera , Dictyostelium/genetics , Dictyostelium/growth & development , Galactosidases/biosynthesis , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/biosynthesis , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase/genetics , Spores/cytology , Spores/genetics
3.
Chinese Journal of Biotechnology ; (12): 592-597, 2008.
Article in Chinese | WPRIM | ID: wpr-342865

ABSTRACT

One pair of primers were designed and synthesized on the base of the cDNA sequence encoding Schizosaccharomyces pombe N-glycanase reported on the GenBank. The cDNA sequence encoding Peptide N-glycanase was cloned from the Schizosaccharomyces pombe by RT-PCR. And then the RT-PCR product was cloned into the expression vector pET-15b. The expression vector pET-15b(+)/Png1p was transformed into E. coli BL21(DE3). The results showed that the relative molecular weight of the enzyme was determined to be approximately 39 kD using SDS-PAGE. The expression products after induction and purification can catalyze the cleavage of N-linked oligosaccharides from glycoprotein coped with heat, but have no action on the native glycoprotein with the help of DTT. The percentage of deglycosylated RNase B treated with equate Png1p in different reaction temperature, pH, concentration of DTT and denatured temperature showed that the optimum temperature, the optimum pH is 30 degrees C; the optimum concentration of DTT is 10 mmol/L and the optimum denatured temperature is 100 degrees C.


Subject(s)
Cloning, Molecular , Escherichia coli , Genetics , Metabolism , Glycosylation , Hydrogen-Ion Concentration , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase , Genetics , Metabolism , Recombinant Proteins , Genetics , Schizosaccharomyces , Genetics , Temperature
4.
Chinese Journal of Biotechnology ; (12): 911-915, 2005.
Article in Chinese | WPRIM | ID: wpr-237051

ABSTRACT

In order to obtain active recombinant PNGase F in Escherichia coli, a prokaryotic expression vector pET28a/PNGase F was constructed. Amplification of PNGase F was obtained using PCR technique employing suitable primers designed according to the PNGase F gene sequence from Flavobacterium nmeningosepticum. The expression of PNGase F gene in LB medium or M9 medium led to the formation of inclusion body and soluble protein, respectively. The refolding of the denatured inclusion body was successful by gradual dilution. Further purification of the refolded protein and soluble crude extract from M9 medium with Ni2+ -NTA argarose resulted a 90% purified PNGase F. The purified protein catalyzed the complete and intact cleavage of N-linked oligosaccharides from various glycoproteins. The efficiency of this cleavage was affected by the substrate status in the reaction system. In summary, we have developed an enzyme production system where PNGase F was over-expressed in recombinant E. coli. This system can provide more than 15 mg/L purified active PNGase F. This purified active PNGase F can be used as tools in analyzing the oligosaccharide structure.


Subject(s)
Bacterial Proteins , Genetics , Metabolism , Escherichia coli , Genetics , Metabolism , Flavobacterium , Genetics , Glycosylation , Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase , Genetics , Metabolism , Recombinant Fusion Proteins , Genetics , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL